High-dimensional tests for functional networks of brain anatomic regions
نویسندگان
چکیده
منابع مشابه
Describing functional diversity of brain regions and brain networks
Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way ...
متن کاملRegions of Interest as nodes of dynamic functional brain networks
The properties of functional brain networks strongly depend on how their nodes are chosen. Commonly, nodes are defined by Regions of Interest (ROIs), pre-determined groupings of fMRI measurement voxels. Earlier, we have demonstrated that the functional homogeneity of ROIs, captured by their spatial consistency, varies widely across ROIS in commonly-used brain atlases. Here, we ask how ROIs beha...
متن کاملFunctional principal component model for high-dimensional brain imaging
We explore a connection between the singular value decomposition (SVD) and functional principal component analysis (FPCA) models in high-dimensional brain imaging applications. We formally link right singular vectors to principal scores of FPCA. This, combined with the fact that left singular vectors estimate principal components, allows us to deploy the numerical efficiency of SVD to fully est...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملTests for High-Dimensional Covariance Matrices
We propose tests for sphericity and identity of high-dimensional covariance matrices. The tests are nonparametric without assuming a specific parametric distribution for the data. They can accommodate situations where the data dimension is much larger than the sample size, namely the “large p, small n” situations. We demonstrate by both theoretical and empirical studies that the tests have good...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2017
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2017.01.011